Structure of some numerical semigroup rings
نویسندگان
چکیده
منابع مشابه
ساختار کلاسهایی از حلقه های z- موضعی و c- موضعی the structure of some classes of z-local and c-local rings
فرض کنیمr یک حلقه تعویض پذیر ویکدار موضعی باشدو(j(r رایکال جیکوبسن r و(z(r مجموعه مقسوم علیه های صفر حلقه r باشد.گوییم r یک حلقه z- موضعی است هرگاه j(r)^2=. .همچنین برای یک حلقه تعویض پذیر r فرض کنیم c یک عنصر ناصفر از (z( r باشد با این خاصیت که cz( r)=0 گوییم حلقه موضعی r یک حلقه c - موضعی است هرگاه و{0 و z(r)^2={cو z(r)^3=0, نیز xz( r)=0 نتیجه دهد که x عضو {c,0 } است. در این پایان نامه ساخ...
Identities of Regular Semigroup Rings
The author proves that, if S is an FIC-semigroup or a completely regular semigroup, and if RS is a ring with identity, then R < E(S) > is a ring with identity. Throughout this paper, R denotes as a ring with identity. Let S be a semigroup, X ⊆ S . The following notations are used in the paper: < X > : the subsemigroup of S generated by X ; |X| : the cardinal number of X ; E(S): the set of idemp...
متن کاملDivisorial Linear Algebra of Normal Semigroup Rings
We investigate the minimal number of generators μ and the depth of divisorial ideals over normal semigroup rings. Such ideals are defined by the inhomogeneous systems of linear inequalities associated with the support hyperplanes of the semigroup. The main result is that for every bound C there exist, up to isomorphism, only finitely divisorial ideals I such that μ(I) ≤ C. It follows that there...
متن کاملGoto Numbers of a Numerical Semigroup Ring and the Gorensteiness of Associated Graded Rings
The Goto number of a parameter ideal Q in a Noetherian local ring (R, m) is the largest integer q such that Q : m is integral over Q. The Goto numbers of the monomial parameter ideals of R = k[[x1 , x2 , . . . , xν ]] are characterized using the semigroup of R. This helps in computing them for classes of numerical semigroup rings, as well as on a case by case basis. The minimal Goto number of R...
متن کاملA combinatorial proof of the Eisenbud-Goto conjecture for monomial curves and some simplicial semigroup rings
We will give a pure combinatorial proof of the Eisenbud-Goto conjecture for arbitrary monomial curves. In addition to this, we show that the conjecture holds for certain simplicial affine semigroup rings.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Banach Center Publications
سال: 2020
ISSN: 0137-6934,1730-6299
DOI: 10.4064/bc121-5